Zpracování stochastických účinků zatížení
20. 8. 2014
1. Všeobecně
Je rozdíl mezi zpracováním účinků zatížení pro prostou únosnost, creepovou únosnost na jedné straně a únavovou únosnost na straně druhé.
V případě působení koroze anebo eroze (tj. zeslabení tloušťky stěny potrubí v čase) se v čase začíná pohybovat i pravděpodobnostní rozdělení účinků zatížení, tj. Parametr umístění se zvětšuje. Působení koroze anebo eroze může nastat nejen při únosnosti prosté, ale může se kombinovat i s creepem anebo únavou.
2. Únosnost prostá pevnostní
U prosté pevnostní únosnosti se s účinkami provozního zatížení porovnává odolnost konstrukce, kterou získáme z meze kluzu a z pevnosti materiálu, získáme ji zkoušením více vzorků stejného materiálu na trhacím stroji a jeho statistickým zpracováním. Dostaneme tak rozdělení pravděpodobnosti dovoleného napětí v zavislosti na jeho četnosti.
Jako účinky provozního zatížení bereme statistické zpracování skutečných účinků provozního zatížení v jednom zatěžovacím cyklu. Dostaneme tak rozdělení pravděpodobnosti skutečného napětí v zavislosti na jeho četnosti.
3. Únosnost creepová
U creepové únosnosti se s účinkami provozního zatížení porovnává odolnost konstrukce, kterou získáme z creepové pevnosti materiálu, u oceli je to za vyšší teploty, a to při různém času působení stejného zatížení. Získáme ji zkoušením více vzorků stejného materiálu na speciálním trhacím stroji, který zajistí působení stejné síly po delší dobu, a jeho statistickým zpracováním. Dostaneme tak rozdělení pravděpodobnosti dovoleného napětí při creepu v zavislosti na jeho četnosti, toto opakujeme několikrát pro různé teploty.
Jako účinky provozního zatížení bereme statistické zpracování skutečných účinků provozního zatížení v jednom zatěžovacím cyklu. Dostaneme tak rozdělení pravděpodobnosti skutečného napětí v zavislosti na jeho četnosti.
4. Únosnost únavová
U únavové únosnosti se s účinkami provozního zatížení porovnává odolnost konstrukce, kterou získáme při statistickém zpracování Wöhlerovy křivky. Dostaneme tak rozdělení pravděpodobnosti dovoleného napětí v zavislosti na jeho četnosti, pro různý ekvivalentní počet zatěžovacích cyklů.
Jako účinky provozního zatížení bereme statistické zpracování skutečných účinků provozního zatížení v jednom zatěžovacím cyklu. Z průběhu napětí způsobeného provozním zatížením za určitý čas získáváme závislost pravděpodobnostního rozdělení různých rozkmitů skutečného napětí v zavislosti na jeho četnosti. Střední napětí a četnosti rozkmitů napětí se získávají např. metodou stékajícího deště. Jako čas měření můžeme s výhodou použít čas jednoho zatěžovacího cyklu, což je výhodné právě pro tlakové sestavy v chemickém průmyslu eventuálně v energetice.
5. Literatura a odkazy pro další a podrobnější informace
Marek P., Brozzetti J., Guštar M. a Tikalsky P.: Probabilistic Assessment of Structures using Monte Carlo Simulation. Background, Exercises and Software, Institute of Theoretical and Applied Mechanics,Academy of Sciences of Czech Republic, 2003